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Abstract—Not only are Deep Neural Networks (DNNs) black

box models, but also we frequently conceptualize them as such.

We lack good interpretations of the mechanisms linking inputs

to outputs. Therefore, we find it difficult to analyze in human-

meaningful terms (1) what the network learned and (2) whether

the network learned. We present a hierarchical decomposition

of the DNN discrete classification map into logical (AND/OR)

combinations of intermediate (True/False) classifiers of the input.

Those classifiers that can not be further decomposed, called

atoms, are (interpretable) linear classifiers. Taken together, we

obtain a logical circuit with linear classifier inputs that computes

the same label as the DNN. This circuit does not structurally

resemble the network architecture, and it may require many

fewer parameters, depending on the configuration of weights.

In these cases, we obtain simultaneously an interpretation and

generalization bound (for the original DNN), connecting two

fronts which have historically been investigated separately. Unlike

compression techniques, our representation is exact. We motivate

the utility of this perspective by studying DNNs in simple, con-

trolled settings, where we obtain superior generalization bounds

despite using only combinatorial information (e.g. no margin

information). We demonstrate how to "open the black box" on

the MNIST dataset. We show that the learned, internal, logical

computations correspond to semantically meaningful (unlabeled)

categories that allow DNN descriptions in plain English. We

improve the generalization of an already trained network by

interpreting, diagnosing, and replacing components within the

logical circuit that is the DNN.

I. INTRODUCTION

Deep Neural Networks (DNNs) are among the most widely
studied and applied models, in part because they are able
to achieve state-of-the-art performance on a variety of tasks
such as predicting protein folding, object recognition, playing
chess. Each of these domains was previously the realm of many
disparate, setting-specific, algorithms. The underlying paradigm
of Deep Learning (DL) is, by contrast, relatively similar across
these varied domains. This suggests that the advantages of DL
may be relevant in a variety of future learning applications
rather than being restricted to currently-known settings.

The philosophy of investigating deep learning has typically
focused upon keeping experimental parameters as realistic as
possible. A key advantage enabled by this realism is that the
insights from each experiment are immediately transferable
to settings of interest. However, this approach comes with an
important disadvantage: Endpoints from realistic experiments
can be extremely noisy and complicated functions of variables
of interest, even for systems with simple underlying rules.
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Newton’s laws are simple, but difficult to discover except in
the most controlled of settings.

The goal of our study is to understand the relationship
between generalization error and network size. We seek to
clarify why DNN architectures that can potentially fit all
possible training labels are able to generalize to unseen data.
Specifically, we would like to understand why increasing the
capacity of a DNN (through increasing the number of layers
and parameters) is not always accompanied by an increase
in test error. To this end we study fully-connected, Gaussian-
initialized, unregularized, binary classification DNNs trained
with gradient descent to minimize cross-entropy loss on 2-
dimensional data 1. Even in such simple settings, generalization
is not yet well-understood (as bounds can be quite large for
deep networks), and our goal is to take an important step in
that direction.

In adopting a minimalist study of this generalization phe-
nomenon, the view taken in this paper is aligned with that
expressed by Ali Rahimi in the NIPS2017 "Test of Time Award"
talk: "This is how we build knowledge. We apply our tools
on simple, easy to analyze setups; we learn; and, we work
our way up in complexity. . . Simple experiments — simple
theorems are the building blocks that help us understand more
complicated systems."

—Rahimi (2017)
Our contributions are:

1) We give an intuitive, visual explanation for generalization
using experiments on simple data. We show that prior
knowledge about the training data can imply regularizing
constraints on the image of gradient descent independently
of the architecture. We observe this effect is most
pronounced at the decision boundary.

2) We represent exactly a DNN classification map as a logical
circuit with many times fewer parameters, depending on
the data complexity.

3) We demonstrate that our logical transformation is useful
both for interpretation and improvement of trained DNNs.
On the MNIST dataset we translate a network "into plain
English". We improve the test accuracy of an already
trained DNN by debugging and replacing within the

logical circuit of the DNN a particular intermediate
computation that had failed to generalize.

4) We give a formal explanation for generalization of deep
networks on simple data using classical VC bounds for
learning Boolean formulae. Our bound is favorable to

1Though the generalization of DNNs has been attributed in part to SGD,
dropout, batch normalization, weight sharing (e.g. CNNs), etc., none of these
are strictly necessarily to exhibit the apparent paradox we describe.
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state of the art bounds that use more information (e.g.
margin). Our bounds are extremely robust to increasing
depth.

II. SETTING AND NOTATION

In this paper we study binary classification ReLU fully
connected deep neural networks N : Rn0 7! R, that assign
input x label y 2 {False, T rue} according to the value
[N (x) � 0]. This network has d hidden layers, each of width
nl, indexed by l = 1, . . . , d. We reserve the index 0[d + 1]
for the input[output] space, so that nd+1 = 1. Our ReLU
nonlinearities, R(x)i = max{0, xi}, are applied coordinate-
wise, interleaving the affine maps defined by weights A

(l)
2

Rnl+1⇥nl , b
(l)

2 Rnl+1 . These layers compute recursively

N
(l+1)(x) , b

(l+1) +A
(l)
R(N (l)(x)).

Here, we include the non-layer indices 0 and d+ 1 to address
the input, x = N

(0)(x), and the output, N (x) = N
(d+1)(x),

respectively.
For a particular input, x, each neuron occupies a binary

"state" according to the sign of its activation. The set of
inputs for which the activation of a given neuron is identically
0 comprises a "neuron state boundary"(NSB), of which we
consider the decision boundary to be a special case by
convention. We can either group these states by layer or all
together to designate either the layer state, �l(x) 2 {0, 1}nl ,
or the network state, �̄(x) = (�1(x), . . . ,�d(x)), respectively.

We consider our training set, {(x1, y1), . . . , (xm, ym)}, to
represent samples from some distribution, D. We define
generalization error of the network to be the difference between
the fraction correctly classified in the finite training set and in
the overall distribution. We define training as the process that
assigns parameters the final value of unregularized gradient
descent on cross-entropy loss.

III. INSIGHTS FROM A CONTROLLED SETTING

A. Finding the Right Question

Note that one is not always guaranteed small generalization
error. There are many settings where DNNs under-perform and
have high generalization error. For our purposes, it suffices
to recall that when the inputs and outputs (X,Y ) ⇠ D are
actually independent, e.g., Y |X ⇠ Bernoulli(1/2), neural
networks still obtain zero empirical risk, which implies the
generalization error can be arbitrarily bad in the worst case
(Zhang et al., 2017). From this, we can conclude that making
either an explicit or implicit assumption about the dataset, the
data, or both, is strictly necessary and unavoidable. At the very
least, one must make an assumption which rules out random
labels with high probability.

Notice that the only procedural distinction between a DNN
that will generalize and one that will memorize is the dataset.
Those network properties capable of distinguishing learning
from memorizing, e.g., Lipschitz constant or margin, must
therefore arise as secondary characteristics. They are functions
of the dataset the network is trained on.

We want clean descriptions of DNN functions that generalize.
By the above discussion, these are the DNNs that inherit some

regularizing property from the training data through the gradient
descent process. What sort of architecture agnostic language
allows for succinct descriptions of trained DNNs exactly when
we make some strong assumption about the training set?

B. A Deep Think on Simple Observations

We find in our experiments that DNNs of any
architecture trained on linearly classifiable data are

almost always linear classifiers (Fig 1).
Is this interesting? Let us consider: though our network has

enormous capacity, in this fixed setting of linearly separable
data, the deep network behaves as though it has no more
capacity than a linear model. When we discuss capacity of a
class a functions, we ordinarily consider a hypothesis class
consisting of networks indexed over all possible values of
weights (or perhaps in a unit ball), since no such restrictions
are explicitly built into in the learning algorithm. For a large
architecture, such as ArchIII, this hypothesis class consists of
a tremendous diversity of decision boundaries that fit the data.
However, here we observe only a subset of learners: Not every
configuration of weights nor every hypothesis is reachable
by training with gradient descent on linearly classifiable data.
Consider a learning the DNN weights corresponding to the
9 layer network, ArchIII. The VCDim of such hypotheses
indexed by every possible weight assignment is 1e6, which is
unhelpfully large. But, have we measured the capacity of the
correct class? If we instead use the class reachable by gradient
descent, then data assumptions, which are in some form
necessary, by constraining the inputs to our learning algorithm
in turn restrict our hypothesis class. Linear separability is a
particularly strong data assumption which reduces our the VC
dimension of our hypothesis class from 1e6 to 3. We conclude:

To ensure generalization of unregularized DNN learners, not
only are data assumptions necessary, but also strong enough
assumptions on the training data are themselves sufficient for
generalization.

In Figures 1b,1c, we see that a DNN with more parameters
learns a more complicated function but not a more complicated
classifier. For example, the number of linear regions does
seem to scale with depth for fixed dataset. However, instead
of intersecting the decision boundary or one another, these
additional NSBs form redundant onion-like structures parallel
to the decision boundary.

Since we have argued that learning guarantees in this setting
are essentially equivalent to training data guarantees, capacity
measures on the learned network N that imply generalization
must somehow reflect the regularity of the data that was
originally trained on. Conversely, the factors not determined by
the training data structure should not factor into the capacity
measure. For example, we desire bounds which do not grow
with depth.

A capacity measure on N (x) that is determined entirely
by restricting N to a neighborhood of its decision boundary
accomplishes both such goals. The effect of the data is captured
because the geometry of this boundary closely mirrors the that
of the training data in arrangement and complexity. Consider
also that behavior of N at the decision boundary is still is
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(a) Regularizing Effect of Linearly Separable Data (b) DataI (c) DataII

Fig. 1: Structural organization of the decision boundary(DB) and NSBs (where each neuron changes from "on" to "off") of
trained DNNs as the data (Fig. 1a) and architecture complexity varies (Figs.1b, 1c). In Fig. 1a, if and only if we include
additional noisy training data to the linearly classifiable DataI can we avoid learning an (essentially) linear classifier. Regularity
is not tied to data fit but data structure: all 4 ArchIII classifiers have 0 training error and vanishing loss on the same original
data. In columns (1b,1c) we plot all NSBs(different linestyle[color] distinguishes NSBs of neurons in different[the same] hidden
layer) and the DB(dotted). We see that for fixed dataset, increasing the architecture size (moving down a column) does not
qualitatively change the learned DB. Additional layers may add more NSBs, but these organize during training in redundant,
parallel shells that do not make the DB more complex. Only those NSBs that intersect the DB influence the DB and cause it to
bend. Not only is the number of intersections between the DB and NSBs minimized, but also they separate from one another
during training, as if by some (regularizing) "repulsive force", most readily apparent in row 2 col 1b (and in the Supplemental
animations), that repels the NSBs from the decision boundary. There are several sources of relevant additional information for
this figure. The Appendix contains Figures 8 and 9, which are useful to quickly visually appreciate the architectures, ArchI,II,III,
and training data, DataI,II,III, that we use throughout. It also contains Figure 5, which along with the Supplemental Animations,
elaborate on these NSB diagrams in number, kind, and size. 8 and 9

sufficient to determine each input classification and therefore
the generalization analysis is unchanged. We claim restricting
N to near the decision boundary destroys the architecture
information used to parameterize N . More specifically, only
the existence of neurons whose NSB intersects the decision
boundary can be inferred from observation of inputs x and
outputs N (x) near the boundary. For example, this restriction
is the same both for a linear classifier and for a deep network
that learns a linear classifier with 50 linear regions (as in Fig.
1b).

IV. OPENING THE BLACK BOX THROUGH DEEP LOGICAL
CIRCUITS

The key idea is to characterize the decision boundary of the
DNN by writing the discrete valued classifier x 7! N (x) � 0
as a logical combination of linear classifiers. It will turn out
that the most economical descriptions will be hierarchical,
so that the DNN classifier will be composed of Boolean
combinations of intermediate classifiers. These intermediate
classifiers identify higher order features useful for the learned
task. The final result will be a logical circuit which produces the
same binary label as the DNN classifier on all inputs. Finding
a circuit that is "simple" is our key to both interpretability and
generalization bounds.

One such example is shown in Figure 2. We show that our
method translates a 9 hidden layer DNN classification map into
an OR combination of just 6 linear classifiers. To emphasize,
our representation is the DNN. It applies to all inputs: training,
test, and adversarial alike.

When we train networks on the MNIST dataset, the learned
circuit is more complicated, but we can still understand "role"
of the intermediate classifiers within the circuit. By probing the
internal circuitry with training and validation inputs, we can
interpret the role of the components by cross-referencing with
semantic categories (perhaps provided by a domain expert). A

priori, there is no reason why this should be possible: The
high level features a DNN learns as useful for this task are
not obliged to be those that humans identify. However we
see experimentally extremely encouraging evidence for this.
When we group digits 0� 4 and 5� 9 into binary targets for
classification, the DNN virtually always learns individual digits
as intermediate steps within the logical circuit (Figure 3). For
space, only those circuit components closest to the output are
shown. A more involved circuit study is available in Figure 6.

The dichotomy presented is that Fig 3a demonstrates the
importance of our method to interpretability, and Fig 3b,
to improving generalization. Although interpretability and
generalization are usually studied separately, understanding
"what N has learned" is actually very closely related to
understanding "what N has memorized". In fact, one of the
takeaways from Figure 3 is that the mechanism of memorization

itself can have interpretation. In Figure 3b we exploit such an
interpretation to improve generalization error by "repairing"
the defect.

To clarify,

V. A THEORY OF DNNS AS LOGICAL HIERARCHIES

In this section, starting with any fixed DNN classifier,
we show how to construct, simplify, measure complexity of,
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Fig. 2: The logical representation of the classifier learned by the ArchIII network to classify the DataII data (shaded region
classified True). Our algorithm outputs the RHS: the rules the DNN uses to assign a positive label. For at least one of the
images on the right, the input must lie in the blue region. These rules are not apparent by inspection of the ⇠ 7e5 network
parameters.

and derive generalization bounds for an equivalent logical
circuit. These bounds apply to the original DNN. We show
they compare favorably with traditional norm based capacity
measures.

A. Boolean Conversion: Notation and Technique

In our theory, we designate µ and ⌧ as special characters
with dual roles and identical conventions (all rules established
for one holds for the other). We consider the symbols, µ, ⌧ , to
represent binary vectors that index by default over all binary
vectorsand implicitly promote to diagonal binary matrices,
Diag(µ), Diag(⌧), for purposes of matrix multiplication. For
matrices, M , we define (M±)i,j = max{0,±Mi,j}. To demon-
strate, we have for d = 1: N (x) = b

(1) +maxµ A
(1)
+ µ(b(0) +

A
(0)

x) � max⌧ A
(1)
� ⌧(b(0) + A

(0)
x). In fact, we may write

this as a MinMax or a MaxMin formulation by commuting,
�max⌧ = min�⌧ , and factoring out the Max and Min in
either order. Our primary tool to relate to Boolean formulations
is the following.

Proposition 1. Let f : A⇥B 7! R. Then we have the following

logical equivalence:

max
↵2A

min
�2B

f(↵,�) � 0

�
()

_

↵2A

^

�2B


f(↵,�) � 0

�

We classify network states, ⌃̄ = ⌃̄+ [ ⌃̄�, in terms
of the output sign, ⌃̄± = {�̄(x)| ± N (x) � 0}. We use
⌃̄0 = ⌃̄+ \ ⌃̄� for those states at the boundary. For J ⇢ [d],
we define ⌃̄J [⌃̄J

0 ] to be the projection of ⌃̄[⌃̄0] onto the
coordinates indexed by J . As a shorthand, we understand the
symbols µ̄

[k] = (µ1
, . . . , µ

k) and µ̄ = µ̄
[d] = (µ1

, . . . , µ
d) to

be equivalent in any context they appear together.
Define for every ⌧, µ, a linear function of x, P (1)(µ, ⌧, x) =

b
(1) + A

(1)
+ µ

1(b(0) + A
(0)

x) � A
(1)
� ⌧

1(b(0) + A
(0)

x), called
the "Net Operand". We have [N (x) � 0] , _µ ^

_⌧ [P (1)(µ, ⌧, x) � 0]. To generalize to more layers, we can
recursively define:

P
(l+1)(µ̄[l+1]

, ⌧̄
[l+1]

, x) = A
(l+1)
+ µ

l+1
P

(l)(µ̄[l]
, ⌧̄

[l]
, x)

�A
(l+1)
� ⌧

l+1
P

(l)(⌧̄ [l], µ̄[l]
, x) + b

(l+1)
.

One can derive by substitution that P
(d)(�̄(x), �̄(x), x) =

N (x). This choice of µ̄ = ⌧̄ = �̄(x) will always be a saddle
point solution to Eqn 1 in the following theorem.

Theorem 1. Let P
(d)

be the net operand for any fully-

connected ReLU network, N . Then,

N (x) = max
µd

min
⌧d

· · ·max
µ1

min
⌧1

P
(d)(µ̄, ⌧̄ , x) (1)


N (x) � 0

�
,

_

µd

^

⌧d

· · ·

_

µ1

^

⌧1


P

(d)(µ̄, ⌧̄ , x) � 0

�
(2)

Notice that we can derive the second line (2) from the first (1)
by recursive application of Proposition 1. Since we index over
all binary states, the number of terms in our decomposition
(Eqn 2) is extremely large. Though (it turns out) we may
simply matters considerably by indexing instead over network
states, ⌃̄. The next Theorem says that when the right hand
side(RHS) of Eqn. 1 is indexed by only those states realized at
the decision boundary, ⌃̄0, the RHS still agrees with N (x) in
sign, but necessarily numerical value. Thus they are equivalent
classifiers.

Theorem 2. Let N be a fully-connected ReLU network with

net operand, P
(d)

, and boundary states, ⌃̄0. Then,

[N (x) � 0] ,
_

µd2⌃̄d
0

^

⌧d2⌃̄d
0

_

{µd�1|(µd�1,µd)2⌃̄d�1,d
0 }

· · ·

_

{µ1|µ̄2⌃̄0}

^

{⌧1|⌧̄2⌃̄0}


P

(d)(µ̄, ⌧̄ , x) � 0

�
(3)

The proofs for both Theorems 1 and 2 can be found in the
Appendix VIII-F. We also include explicit pseudocode, "Net-
work Tree Algorithm" 2 (in Appendix VIII-E) for constructing
our Logical Circuit from ⌃̄0. Somehow, we find the actual
python implementation more readable, which we have included
in the supplemental named "network_tree_decompositionṗy".
We use this file to generate the readout in Figure 10d (Appendix
VIII-D) to provide tangible, experimental support for the
validity of our conversion algorithm.

B. Formalizing Capacity for Logical Circuits

We repurpose the following theorem used by (Bartlett et al.,
2017a) for ReLU networks data-independent VC dimension
bounds.

Theorem 3. (Theorem 17 in (Goldberg and Jerrum, 1995)):

Let k,n be positive integers and f : Rn
⇥ Rk

7! {0, 1} be a

function that can be expressed as a Boolean formula containing
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(a) Trained DNN with a Concise "English" Description

(b) A circuit with localized memorization

Fig. 3: Selected subsets of the logical circuits corresponding to binary classification DNNs trained on the MNIST dataset.
Each 2 ⇥ 10 array represents a different binary classifier within the network circuit, which assigns True or False to every
input image. In Fig. 3a[Fig. 3b] training[test] images of number l contribute in the l

th column to the brightness of either
top or the bottom row of every array. The choice of row corresponds to whether corresponding classifier outputs True or
False. The diagram reads right to left along solid arrows terminating in the leftmost array corresponding to the DNN binary
output [N (x) � 0]. The training objective only explicitly distinguishes 0� 4 from 5� 9. Yet, we see that the intermediate
logical computations the network learns delineate semantically meaningful subcategories. In Fig. 3a, the DNN internal logic
even admits a description in plain English. We show in Figure 3b how the internal logical circuitry within the DNN can be
tweaked to improve generalization. Connected with solid lines, we see a network that has overfit badly (1.0, 0.78 train and test
accuracy). The percentage [in parenthesis] under each column indicates how that training[test] digit is assigned True. We see
that the intermediate classifier (middle right) struggles to separate Four from the positive labels. A second classifier (top right)
is dedicated to learning to identify Fours as False, allowing the network to fit the training data. However, by comparing training
and test performance, we can see that these Fours are not learned but memorized: As shown in solid rectangles, the intermediate
and DNN classifier, respectively, assign True to 9%[48%] and 0%[45%] of the Fours in the training[test] set, accounting for
the bulk of the generalization error! In practice, this network would be discarded and retrained from scratch. Since we now
have access to the internal logic of the network, we are instead able to surgically replace the memorizing component. The
first step we have done implicitly: we use domain knowledge to interpret the component function as "excluding Fours". We
then train a second network, we call a "prosthetic", learning [N 0(x) � 0] (with the same settings and data), to label 4 as False
and 5� 9 as True. We can then excise the memorizing component, replacing its role in the logical circuit with the prosthetic
(bottom right) to obtain a new classifier consisting of the three classifiers connected by dotted lines. The classifier we engineer
([h(x) � 0] bottom left) does better on Fours, 45% ! 9% classified True (dotted rectangle) and has higher test accuracy overall
(.78 ! .83).
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s distinct atomic predicates where each atomic predicate is a

polynomial inequality or equality in k + n variables of degree

at most d. Let F = {f(·, w) : w 2 Rk
}. Then VCDim(F) 

2k log2(8eds).

As a short hand, we refer to any Boolean formula satisfying
the premises in the above theorem as class (k, s, d). If we
consider (for fixed ⌃̄0) the complexity of learning the weights
defining the linear maps in Eqn. 2, Jerrum’s Theorem tells us
that we are primarily concerned with the number of parameters
being learned. Fortunately, we only pay a learning penalty for
those weights distinguishable by neuron activations in ⌃̄0. For
example, within the same layer, a single neuron is sufficient
model any collection of neurons which are always "on" or
"off" simultaneously at the decision boundary (even if this
is false elsewhere). In general, we can restrict to a subset
of rl = rank(⌃̄l

0) representative neurons without sacrificing
expressivity at the boundary. We can additionally delete entire
layers when rl = 1. We use r̄ , (r0, r1, . . . , rd) to group the
dimensions of the reduced architecture into a single vector.
Note that when N is a linear classifier, then r̄ is a vector of
all 1s. rl = 1 at every layer.

Finally, we define �(N ) : Rk
⇥ Rn0 to be the Boolean

function in Eqn 2 corresponding to the reduced network, whose
depth we also overload as d, and take k to be the number of
parameters on which the formula depends. The formula has
s = |⌃̄0|

2 inequalities. The explicit calculations for deter-
mining k, s, d, r̄ are described Function MinimalDescrip in
Algorithm 1 in Appendix VIII-E. The following is automatic
given the discussion so far.

Theorem 4. Let N : Rn0 7! R be a fully-connected

ReLU network. Suppose the Boolean formula, �(N ), is of

class (k, s, d). Define the hypothesis class H�(N ) , {x 7!

�(N )(w, x)|w 2 Rk
}. Then

1) x 7! [N (x) � 0] 2 H�(N )

2) VCDim(H�(N ))  2k log2(8esd)

Of course, this bound only applies to the learned DNN if
the hypothesis class H�(N ) is implied in advance. To address
(informally) the capacity for a single classifier, N , we define
V C

Bool
k,d,s(N ) , 2k log2(8esd) to be the complexity of learning

the parameters of the (k, s, d)�Boolean formula representing
N . This is an upper bound for the smallest complexity over
formulae � and classes H�(N ) containing N � 0 as a
member. In Figure 4, we train N to classify samples in DataIII
and compare qualitatively our capacity measure, V C

Bool
k,d,s(N ),

with those of other well-known approaches as we vary the
network size and training duration and depth. We compare with
methods which appear at first glance to make use of additional
information—that of scale, norm, and margin—which should
in principle produce tighter bounds.

And yet, even though we do not take advantage of margin,
we enjoy a comfortable edge over other comparable methods.
Under all conditions, our bound seems to be orders of
magnitude smaller than these other (well-respected) bounds.
So, what is going on? In fact, it is our bound that is advantaged
by using more (between-layer) information!.

We revisit the observation that a very deep DNN trained on

linearly separable data is a linear classifier. We think that this
simple characterization should somehow be accessible to our
capacity measure through the weights. Linearly separable data
represents, to us, the simplest, plausible, real-world proving
ground for models of DNN generalization error. The methods
with which we compare bound the distortion applied by each
layer in terms of a corresponding weight matrix norm and
accumulate the result. We should like our method to "realize"
that the DNN classifier is linear, but this can not be discovered
by scoring each layer. In fact, having an efficient Boolean
representation is a global property that is sensitive to the
relative configuration of weights across all layers. It is not
information that is contained in the weight norms used by
other methods, which destroy weight-sign information, among
other properties, on which linearity of the classifier depends.
We would even suggest that our notion of regularity is "more
nuanced" in the sense that whether a layer is well-behaved
only makes sense to talk about within the context of the overall
network.

Returning to Figure 4b, we observe that we our bound is
relatively stable with respect to increasing architecture size
and depth. This behavior is instructive in its distinction from
that of uniform (data-independent) VC dimension bounds,
V C

NoData, which depend on the architecture alone. That these
bounds produce unreasonably large, vacuous bounds for over-
parameterized models is widely known and often recited.
Perhaps this notoriety has dissuaded combinatorial analyses of
DNN complexity altogether. However, our results demonstrate
that the vast majority of the bloat in these V C

NoData bounds
can be attributed to a lack of strong data assumptions and not
to its combinatorial nature. When we compare against our own
(also combinatorial) measure, V C

Bool
k,d,s , in Table I we observe

that V C
Bool
k,d,s produces bounds that are orders of magnitude

smaller. We account for this discrepancy as follow: While
V C

NoData yields weak bounds on generalization that always
apply, V C

Bool
k,d,s instead produces strong bounds that apply only

when the data is nice. These bounds are smaller because the
set of DNNs achievable by gradient descent on nice data is
much more regular, and of smaller VC dimension. We explore
this comparison in more depth in Appendix VIII-A.

Lastly, we offer some perspectives connecting our general-
ization studies to building better models in the future. There
are many descriptions of complexity for DNNs. What makes
ours a "good" one? All are equally valid in the sense that every

one of them can prescribe some sufficiently strong regularity
condition that will provably close the gap between training
and test error. But, perhaps we should be more ambitious.
We actually want to decrease model capacity while also

retaining the ability to fit those patterns "typical" of real
world data. While this second property is critical, it is also
completely unclear how to guarantee, even analyze, or even
define unambiguously. We surmise that since our capacity
measure V C

Bool
k,d,s seems empirically to be already minimized

when the data is sufficiently structured, we can hope (and
plausibly hypothesize) that those patterns that can be learned
efficiently by a function class where V C

Bool
k,d,s is controlled

explicitly will not differ from those suited to unregularized
DNNs, where we expect the structured nature of real world
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data to implicitly regulate V C
Bool
k,d,s already.

VI. RELATED WORK

Our discussion of the role the data plays in generalization
is perhaps most similar to Arpit et al. (2017). Many authors
have studied the number of linear regions of a DNN before,
usually focusing on a 2D slice or path through a the data
(Serra et al., 2018; Raghu et al., 2017; Arora et al., 2018a),
optionally including study of how these regions change with
training (Hanin and Rolnick, 2019; Novak et al., 2018) or an
informal proxy for network "complexity" (Zhang et al., 2018;
Novak et al., 2018)

Formal approaches to explain generalization of DNNs fall
into either "direct" or "indirect" categories. By direct, we mean
that the bounds apply exactly to the trained learner, not to an
approximation or stochastic counterpart. Ours falls under this
category, so these are the bounds we compare to, including
(Neyshabur et al., 2015; Bartlett et al., 2017b; Neyshabur et al.,
2017), which we compare to in Fig. 4. While our approach
relies on bounding possible training labelings (VCdim), these
works all rely on having small enough weight norm compared
to output margin.

Indirect approaches analyze either a compressed or stochas-
tic version of the DNN function. For example, PAC-Bayes
analysis (McAllester, 1999) of neural networks (Langford and
Caruana, 2002; Dziugaite and Roy, 2017) produces uniform
generalization bounds over distributions of classifiers which
scale with the divergence from some prior over classifiers.
Recently, Valle-Pérez et al. (2019) produced promising such
PAC-Bayes bounds, but they rely on an assumption that training
samples the zero-error region uniformly, as well as some
approximations of the prior marginal likelihood. Interestingly,
they also touch on descriptional complexity in the appendix,
which is thematically similar to our approach, but do not seem
to have an algorithm to produce such a description. Another
popular approach is to study a DNN through its compression
(Arora et al., 2018b)(Zhou et al., 2018). Unlike our approach,
which studies an equivalent classifier, these bounds apply only
to the compressed version.

VII. CONCLUSIONS

The motivation for our investigation was to describe regular-
ity from the viewpoint of "monotonicity". Suppose that during
training, the activations of a neuron in a lower layer separate
the training data. While the specifics of gradient descent can
be messy, there is no "reason" to learn anything other than
a monotonic relationship (as we move in the input space)
between the activations of that neuron, intermediate neurons
in later layers, and the output. Two neurons related in this
manner necessarily share discrete information about their state.
The same is true of any tuple whose corresponding set of
NSBs have empty intersection. We showed that NSBs adopt
non-intersecting, onion-like structures, implying that very few
measurements of network state are sufficient to determine the
output label with a linear classifier. The "reason" V C

NoData

produces such pessimistic bounds is because in the worst case,
every binary value of �̄(x) is required to determine N (x) � 0

up to linear classifier. We expect structure in the data to reduce
capacity by excluding these worst cases. For linearly separable
data, the the learned DNN classifier depends on no entry of
�̄(x).

As a result, we have produced a powerful method for
analyzing, interpreting, and improving DNNs. A deep network
is a black box model for learning, but it need not be treated
as such by those who study it. Our logical circuit formulation
requires no assumptions and seems extremely promising for
introspection and discussion of DNNs in many applications.

Whether our approach can be extended or adapted to
other datasets is an pressing question for future research. An
important and particularly difficult open question (precluding
such an investigation presently) is the efficient determination
of ⌃̄0 (or even ⌃̄) analytically given the network weights. Such
an algorithm seems prerequisite to bring deep logical circuit
analysis to bear on datasets of higher dimension where we can
no longer grid search.
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(a) Capacity vs Training Step (b) Capacity vs Num Parameters

Fig. 4: Qualitative comparisons of bounds on the generalization error for networks trained on DataIII during training (Fig.
4a) and as additional layers are added (Fig. 4b). Though our bound is in terms of VC dimension only, we compare favorably
with other bounds that additionally use margin. Interestingly, the spike in capacity that occurs around 1000 training steps is
not reflected in our bound, but captured by others. Thus, our method may be blind to some interesting training dynamics,
for example, a massive shift in the relative alignment of weight vectors that leaves the intersection system of neuron state
boundaries unchanged. The empirical phenomenon of depth-invariant generalization error is consistent with the behavior of our
bound (Fig. 4b). These trends are representative of all 9 experiments (Figure 7).
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