
Figure 3. We see that for fixed dataset, 
increasing the architecture size 
(moving down a column) does not 
qualitatively change the learned SBs. 
Additional layers may add more SBs, 
but these organize during training in 
redundant, parallel shells that do not 
contribute to the decision bdry.

This holds even for       ~1e6
giant architectures     param

Insight: represent the network with 
combinations of linear classifiers

❏

We want a conceptual shift which allows concise
 representations of even very deep networks.

 
❏ We pivot to a(n) (equivalent) DNN representation in terms of a 

hiearchical AND/OR combination of linear classifiers. 
The structure of this “Logical Circuit”:
❏ Reflects the network function, not the architecture
❏ Can require many orders fewer parameters
❏ Encodes the training data spatial structure, not the depth.
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❏ Deep Neural Networks(DNNs) are widely used but poorly understood
❏ How and why Deep Learning works is a major open question.
❏ To rule out failure cases, we must make assumptions about the data

We find in our experiments that DNNs of any architecture trained on 
linearly classifiable data are almost always linear classifiers

❏ Practical DNNs are not well understood even as function space
 
❏ We present a DNN representation in terms of a hierarchical AND/OR 

combination of linear classifiers. 
❏ The structure of this “Logical Circuit”:

❏ Reflects the network function, not the architecture
❏ Can require many orders fewer parameters
❏ Encodes the training data spatial structure, not the depth.

IMPACT

Unlike other learning methods, our 
bound benefits from information on 
❏ Weight sign
❏ Cross-layer coordination

 

INTRODUCTION

Selected subsets of the logical circuits corresponding to binary classification 
DNNs trained on the MNIST dataset. Each 2 × 10 array represents a different 
binary classifier within the network circuit, which assigns True or False to 
every input image. In Fig. 3a[Fig. 3b] training[test] images of number l 
contribute in the lth column to the brightness of either top or the bottom row 
of every array. The choice of row corresponds to whether corresponding 
classifier outputs True or False. The diagram reads right to left along solid 
arrows terminating in the leftmost array corresponding to the DNN binary 
output [N (x) ≥ 0]. The training objective only explicitly distinguishes 0 − 4 from 
5 − 9. Yet, we see that the intermediate logical computations the network 
learns delineate semantically meaningful subcategories. In Fig. 3a, the DNN 
internal logic even admits a description in plain English. We show in Figure 3b 
how the internal logical circuitry within the DNN can be tweaked to improve 
generalization. Connected with solid lines, we see a network that has overfit 
badly (1.0, 0.78 train and test accuracy). The percentage [in parenthesis] under 
each column indicates how that training[test] digit is assigned True. We see 
that the intermediate classifier (middle right) struggles to separate Four from 
the positive labels. A second classifier (top right) is dedicated to learning to 
identify Fours as False, allowing the network to fit the training data. However, 
by comparing training and test performance, we can see that these Fours are 
not learned but memorized: As shown in solid rectangles, the intermediate 
and DNN classifier, respectively, assign True to 9%[48%] and 0%[45%] of the 
Fours in the training[test] set, accounting for the bulk of the generalization 
error! In practice, this network would be discarded and retrained from scratch. 
Since we now have access to the internal logic of the network, we are instead 
able to surgically replace the memorizing component. The first step we have 
done implicitly: we use domain knowledge to interpret the component 
function as "excluding Fours". We then train a second network, we call a 
"prosthetic", learning [N′(x) ≥ 0] (with the same settings and data), to label 4 as 
False and 5 − 9 as True. We can then excise the memorizing component, 
replacing its role in the logical circuit with the prosthetic (bottom right) to 
obtain a new classifier consisting of the three classifiers connected by dotted 
lines. The classifier we engineer ([h(x) ≥ 0] bottom left) does better on Fours, 
45% → 9% classified True (dotted rectangle) and has higher test accuracy 
overall (.78 → .83).

❏ Deep Learning thrives in spite of our lack of understanding  
❏ (Broadly) We want to characterize properties of DNN functions:

Generalization Error, Interpretation

❏ Analyzing a (fixed) DNN is at least as hard as describing it.

We want a conceptual shift which allows concise
 representations of even very deep networks.

 
❏ We pivot to a(n) (equivalent) DNN representation in terms of a 

hiearchical AND/OR combination of linear classifiers. 
The structure of this “Logical Circuit”:
❏ Reflects the network function, not the architecture
❏ Can require many orders fewer parameters
❏ Depends on the training data spatial structure, not the depth.
❏ May 

All models shown have 0 
training error and nearly 
identical cross-entropy 
loss on the below data...

...but were trained on 
different data.

Perhaps we should see the 
data itself as regularizing.
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Example of transformation Output  (7e5 param)

We can generalize past linear models by finding model 
features we can use to deduce the regularity of the original data

Interpretation of Generalization: which parts memorize vs learn

Figure 2. Initialized and Learned State Boundaries(SBs), where neurons 
(counting the output) switch from “on/off”. Each SB may bend when 
intersecting another from a previous layer, establishing dependence. A 
linear classifier is one where the decision boundary intersects no NSB.  

Reparameterization Pathway

The data

Figure 3. We see that for fixed dataset, increasing the 
architecture size (moving down a column) does not 
qualitatively change the learned NSBs. Additional layers 
may add more NSBs, but these organize during training in 
redundant, parallel shells that do not make the DB more 
complex. 

However, only the simplest, nearly linear, classifier optically 
resembles classifiers achievable through gradient descent 
("x"s). We hypothesize that gradient descent yields a 
classifier corresponding to a class with not too much more 
capacity than is needed to fit the data.
Only those NSBs that intersect the DB influence the DB and 
cause it to bend. Not only is the number of intersections 
between the DB and NSBs minimized, but also they 
separate from one another during training, as if by some 
(regularizing) "repulsive force", most readily apparent in 
row $2$ col \ref{fig:1-b} (and in the Supplemental 
animations), that repels the NSBs from the decision 
boundary. There are several sources of relevant additional 
information for this figure. The Appendix contains Figures 
\ref{fig:arch_diagrams} and \ref{fig:data_diagrams}, which 
are useful to quickly visually appreciate the architectures, 
ArchI,II,III, and training data, DataI,II,III, that we use 
throughout. It also contains Figure \ref{fig:neuron_states}, 
which along with the Supplemental Animations, elaborate 
on these NSB diagrams in number, kind, and size.
 

Interpretation of Generalization: which parts memorize vs learn

Data Assumptions Destroy 
Architecture Information

Figure 1. Three models 
with the same training 
error and architecture. 
Gradient descent projects 
initialized to linear models. 

ReLU Neural Network

Min-Max of Linear 
Functions 

And-Or of Linear 
Classifiers
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Finding 
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Key Point:
❏ All networks may be 

represented this way,
but overfit networks will 
not simplify

Figure 4. Comparison with 
standard layer-wise bounds 
that depend each weight norm. 

Our Model performs very 
competitively both throughout 
training (a), and as we increase 
the model size (b)
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For example:  [Zhang et al, 2017. Tropical Geometry of Deep Neural Networks]

f,g a pair of linear functions per linear region

Figure 5. DNNs with Data can be clustered according to classificat

Portions of logical circuits from DNNs trained on MNIST. Each 2 × 10 array 
represents a different binary classifier within the network circuit, which 
assigns True or False to every input image. The training objective only 
distinguishes 0 − 4 from 5 − 9.
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