Deep Networks as Logical Circuits: Generalization and Interpretation

Christopher Snyder¹. Sriram Vishwanath².

¹ Department of Biomedical Engineering, University of Texas at Austin, <u>christopher.g.snyder@utexas.edu</u> ² Department of Electrical and Computer Engineering, University of Texas at Austin, Professor, <u>sriram@austin.utexas.edu</u>

Figure with architecture. and error

combinations of linear classifiers

f,g a pair of linear functions per linear region

- $\mathcal{N}^{l}(x) = f^{l}_{\sigma(x)}(x) g^{l}_{\sigma(x)}(x)$ for $l = 1, \dots, d+1$ $\max_{\tau \in \{0,1\}^n} g_\tau(x) \Big)$ For example: [Zhang et al, 2017. Tropical Geometry of Deep Neural Networks]
- $\mathcal{N}(x) = \max_{\mu^d} \min_{\tau^d} \cdots \max_{\mu^1} \min_{\tau^1} \left(f_{\mu}(x) g_{\tau}(x) \right)$
- **Proposition 1.** Let $f : \mathcal{A} \times \mathcal{B} \mapsto \mathbb{R}$. Then we have the

$$\geq 0 \bigg] \Longleftrightarrow \bigvee_{\alpha \in \mathcal{A}} \bigwedge_{\beta \in \mathcal{B}} \bigg[f(\alpha, \beta) \geq 0 \bigg]$$
$$\Leftrightarrow \bigvee_{\mu} \bigwedge_{\tau} \bigg[f_{\mu}(x) - g_{\tau}(x) \geq 0 \bigg]$$
$$\Leftrightarrow \bigvee_{\mu^{d}} \bigwedge_{\tau^{d}} \cdots \bigvee_{\mu^{1}} \bigwedge_{\tau^{1}} \bigg[f_{\mu}(x) - g_{\tau}(x) \geq 0 \bigg]$$

Theorem 4. Let $\mathcal{N} : \mathbb{R}^{n_0} \mapsto \mathbb{R}$ be a fully-connected ReLU network. Suppose the Boolean formula, $\Phi(\mathcal{N})$, is of class (k, s, d). Define the hypothesis class $\mathcal{H}_{\Phi(\mathcal{N})} \triangleq \{x \mapsto d\}$

2. $VCDim(\mathcal{H}_{\Phi(\mathcal{N})}) \leq 2k \log_2(8esd)$

Portions of logical circuits from DNNs trained on MNIST. Each 2 × 10 array represents a different binary classifier within the network circuit, which assigns True or False to every input image. The training objective only distinguishes 0 – 4 from 5 – 9. 'Return False label IFF an. 0123456789

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

IMPACT

Generalization

Interpretation

Figure 5. DNNs with Data can be clustered according to classificat

6(20) 12(15) 91(96) 100(76)100(96)100(93)100(90)100