
Figure 3. We see that for fixed dataset,
increasing the architecture size
(moving down a column) does not
qualitatively change the learned SBs.
Additional layers may add more SBs,
but these organize during training in
redundant, parallel shells that do not
contribute to the decision bdry.

This holds even for ~1e6
giant architectures param

Insight: represent the network with
combinations of linear classifiers

❏

We want a conceptual shift which allows concise
 representations of even very deep networks.

❏ We pivot to a(n) (equivalent) DNN representation in terms of a

hiearchical AND/OR combination of linear classifiers.
The structure of this “Logical Circuit”:
❏ Reflects the network function, not the architecture
❏ Can require many orders fewer parameters
❏ Encodes the training data spatial structure, not the depth.

CASE STUDIES

 OBSERVATIONS

 DIFFERENCE FROM NORM METHODS

Deep Networks as Logical Circuits:
Generalization and Interpretation
Christopher Snyder¹. Sriram Vishwanath².
¹ Department of Biomedical Engineering, University of Texas at Austin, christopher.g.snyder@utexas.edu
² Department of Electrical and Computer Engineering, University of Texas at Austin, Professor, sriram@austin.utexas.edu

❏ Deep Neural Networks(DNNs) are widely used but poorly understood
❏ How and why Deep Learning works is a major open question.
❏ To rule out failure cases, we must make assumptions about the data

We find in our experiments that DNNs of any architecture trained on
linearly classifiable data are almost always linear classifiers

❏ Practical DNNs are not well understood even as function space

❏ We present a DNN representation in terms of a hierarchical AND/OR

combination of linear classifiers.
❏ The structure of this “Logical Circuit”:

❏ Reflects the network function, not the architecture
❏ Can require many orders fewer parameters
❏ Encodes the training data spatial structure, not the depth.

IMPACT

Unlike other learning methods, our
bound benefits from information on
❏ Weight sign
❏ Cross-layer coordination

INTRODUCTION

Selected subsets of the logical circuits corresponding to binary classification
DNNs trained on the MNIST dataset. Each 2 × 10 array represents a different
binary classifier within the network circuit, which assigns True or False to
every input image. In Fig. 3a[Fig. 3b] training[test] images of number l
contribute in the lth column to the brightness of either top or the bottom row
of every array. The choice of row corresponds to whether corresponding
classifier outputs True or False. The diagram reads right to left along solid
arrows terminating in the leftmost array corresponding to the DNN binary
output [N (x) ≥ 0]. The training objective only explicitly distinguishes 0 − 4 from
5 − 9. Yet, we see that the intermediate logical computations the network
learns delineate semantically meaningful subcategories. In Fig. 3a, the DNN
internal logic even admits a description in plain English. We show in Figure 3b
how the internal logical circuitry within the DNN can be tweaked to improve
generalization. Connected with solid lines, we see a network that has overfit
badly (1.0, 0.78 train and test accuracy). The percentage [in parenthesis] under
each column indicates how that training[test] digit is assigned True. We see
that the intermediate classifier (middle right) struggles to separate Four from
the positive labels. A second classifier (top right) is dedicated to learning to
identify Fours as False, allowing the network to fit the training data. However,
by comparing training and test performance, we can see that these Fours are
not learned but memorized: As shown in solid rectangles, the intermediate
and DNN classifier, respectively, assign True to 9%[48%] and 0%[45%] of the
Fours in the training[test] set, accounting for the bulk of the generalization
error! In practice, this network would be discarded and retrained from scratch.
Since we now have access to the internal logic of the network, we are instead
able to surgically replace the memorizing component. The first step we have
done implicitly: we use domain knowledge to interpret the component
function as "excluding Fours". We then train a second network, we call a
"prosthetic", learning [N′(x) ≥ 0] (with the same settings and data), to label 4 as
False and 5 − 9 as True. We can then excise the memorizing component,
replacing its role in the logical circuit with the prosthetic (bottom right) to
obtain a new classifier consisting of the three classifiers connected by dotted
lines. The classifier we engineer ([h(x) ≥ 0] bottom left) does better on Fours,
45% → 9% classified True (dotted rectangle) and has higher test accuracy
overall (.78 → .83).

❏ Deep Learning thrives in spite of our lack of understanding
❏ (Broadly) We want to characterize properties of DNN functions:

Generalization Error, Interpretation

❏ Analyzing a (fixed) DNN is at least as hard as describing it.

We want a conceptual shift which allows concise
 representations of even very deep networks.

❏ We pivot to a(n) (equivalent) DNN representation in terms of a

hiearchical AND/OR combination of linear classifiers.
The structure of this “Logical Circuit”:
❏ Reflects the network function, not the architecture
❏ Can require many orders fewer parameters
❏ Depends on the training data spatial structure, not the depth.
❏ May

All models shown have 0
training error and nearly
identical cross-entropy
loss on the below data...

...but were trained on
different data.

Perhaps we should see the
data itself as regularizing.

 IMAGE CAPTION HERE LIKE THIS

These paragraphs in 30
point text, justify alignment,
solid black or grey, xt, justify
alignment, solid black or
grey, on white backgroun
d. These paragraphs

Example of transformation Output (7e5 param)

We can generalize past linear models by finding model
features we can use to deduce the regularity of the original data

Interpretation of Generalization: which parts memorize vs learn

Figure 2. Initialized and Learned State Boundaries(SBs), where neurons
(counting the output) switch from “on/off”. Each SB may bend when
intersecting another from a previous layer, establishing dependence. A
linear classifier is one where the decision boundary intersects no NSB.

Reparameterization Pathway

The data

Figure 3. We see that for fixed dataset, increasing the
architecture size (moving down a column) does not
qualitatively change the learned NSBs. Additional layers
may add more NSBs, but these organize during training in
redundant, parallel shells that do not make the DB more
complex.

However, only the simplest, nearly linear, classifier optically
resembles classifiers achievable through gradient descent
("x"s). We hypothesize that gradient descent yields a
classifier corresponding to a class with not too much more
capacity than is needed to fit the data.
Only those NSBs that intersect the DB influence the DB and
cause it to bend. Not only is the number of intersections
between the DB and NSBs minimized, but also they
separate from one another during training, as if by some
(regularizing) "repulsive force", most readily apparent in
row 2 col \ref{fig:1-b} (and in the Supplemental
animations), that repels the NSBs from the decision
boundary. There are several sources of relevant additional
information for this figure. The Appendix contains Figures
\ref{fig:arch_diagrams} and \ref{fig:data_diagrams}, which
are useful to quickly visually appreciate the architectures,
ArchI,II,III, and training data, DataI,II,III, that we use
throughout. It also contains Figure \ref{fig:neuron_states},
which along with the Supplemental Animations, elaborate
on these NSB diagrams in number, kind, and size.

Interpretation of Generalization: which parts memorize vs learn

Data Assumptions Destroy
Architecture Information

Figure 1. Three models
with the same training
error and architecture.
Gradient descent projects
initialized to linear models.

ReLU Neural Network

Min-Max of Linear
Functions

And-Or of Linear
Classifiers

Exists

Simplified Formula

Proposition 1

Finding
Boundary
States

Key Point:
❏ All networks may be

represented this way,
but overfit networks will
not simplify

Figure 4. Comparison with
standard layer-wise bounds
that depend each weight norm.

Our Model performs very
competitively both throughout
training (a), and as we increase
the model size (b)

These paragraphs xt, justify alignment,
solid black or grey, on white bacext,
justify alignment, solid black or grey, on
white background. 30 poi

For example: [Zhang et al, 2017. Tropical Geometry of Deep Neural Networks]

f,g a pair of linear functions per linear region

Figure 5. DNNs with Data can be clustered according to classificat

Portions of logical circuits from DNNs trained on MNIST. Each 2 × 10 array
represents a different binary classifier within the network circuit, which
assigns True or False to every input image. The training objective only
distinguishes 0 − 4 from 5 − 9.

Generalization

Interpretation

Interpretation of Generalization

